User Tools

Site Tools


com:nastranfrom

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
com:nastranfrom [2018/02/16 12:03]
phil created
— (current)
Line 1: Line 1:
-====== NAS Command Transformations ====== 
  
-The transformation equations for the [[com:​NASVEC]] and [[com:​NASCCV]] commands ​ 
- 
-===== Stress Transformation Equations ===== 
-==== Thin Shell ==== 
-$$ S_{x_G} = S_{x_L}*cos^2(\alpha)+2*S_{xy_L}*sin(\alpha)*cos(\alpha)+S_{y_L}sin^2(\alpha) $$ 
-$$ S_{y_G} = S_{x_L}*sin^2(\alpha)-2*S_{xy_L}*sin(\alpha)*cos(\alpha)+S_{y_L}cos^2(\alpha) $$ 
-$$ S_{xy_G} = S_{xy_L}*(cos^2(\alpha)-sin^2(\alpha))-(S_{y_L}+S_{x_L})*sin(\alpha)*cos(\alpha) $$ 
-$$ M_{x_G} = M_{x_L}*cos^2(\alpha)+2*M_{xy_L}*sin(\alpha)*cos(\alpha)+M_{y_L}sin^2(\alpha) $$ 
-$$ M_{y_G} = M_{x_L}*sin^2(\alpha)-2*M_{xy_L}*sin(\alpha)*cos(\alpha)+M_{y_L}cos^2(\alpha) $$ 
-$$ M_{xy_G} = M_{xy_L}*(cos^2(\alpha)-sin^2(\alpha))-(M_{y_L}+M_{x_L})*sin(\alpha)*cos(\alpha) $$ 
-==== Thick  Shell ==== 
-$$ N_{x_G} = N_{x_L}*cos^2(\alpha)+2*N_{xy_L}*sin(\alpha)*cos(\alpha)+N_{y_L}sin^2(\alpha) $$ 
-$$ N_{y_G} = N_{x_L}*sin^2(\alpha)-2*N_{xy_L}*sin(\alpha)*cos(\alpha)+N_{y_L}cos^2(\alpha) $$ 
-$$ N_{xy_G} = N_{xy_L}*(cos^2(\alpha)-sin^2(\alpha))-(N_{y_L}+N_{x_L})*sin(\alpha)*cos(\alpha) $$ 
-$$ M_{x_G} = M_{x_L}*cos^2(\alpha)+2*M_{xy_L}*sin(\alpha)*cos(\alpha)+M_{y_L}sin^2(\alpha) $$ 
-$$ M_{y_G} = M_{x_L}*sin^2(\alpha)-2*M_{xy_L}*sin(\alpha)*cos(\alpha)+M_{y_L}cos^2(\alpha) $$ 
-$$ M_{xy_G} = M_{xy_L}*(cos^2(\alpha)-sin^2(\alpha))-(M_{y_L}+M_{x_L})*sin(\alpha)*cos(\alpha) $$ 
-$$ Q_{x_G} = Q_{x_L}*cos(\alpha)+Q_{y_L}*sin(\alpha) $$ 
-$$ Q_{y_G} = -Q_{x_L}*sin(\alpha)+Q_{y_L}*cos(\alpha) $$ 
-===== Strain ​ Equations ===== 
-$$ \varepsilon_x = \frac{\gamma_x}{E}-\nu \frac{\gamma_y}{E} \qquad \varepsilon_y = \frac{\gamma_y}{E}-\nu \frac{\gamma_x}{E} \qquad \varepsilon_{xy} = \frac{\gamma_{xy}}{E}*2(1+\nu) ​ $$ 
-$$\varepsilon_{1,​2} = \frac{\varepsilon_x+\varepsilon_y}{2} \pm \frac{\sqrt{(\varepsilon_x-\varepsilon_y)^2+\varepsilon_{xy}}}{2}$$ 
-==== Thin Shell ==== 
-$$ \gamma_x=S_{x_G} \pm \frac{6*M_{x_G}}{t^2} \qquad \gamma_y=S_{y_G} \pm \frac{6*M_{y_G}}{t^2} \qquad \gamma_{xy}=S_{xy_G} \pm \frac{6*M_{xy_G}}{t^2}$$ 
- 
-==== Thick  Shell ==== 
-$$ \gamma_x=\frac{N_{x_G}}{t} \pm \frac{6*M_{x_G}}{t^2} \qquad \gamma_y=\frac{N_{y_G}}{t} \pm \frac{6*M_{y_G}}{t^2} \qquad \gamma_{xy}=\frac{N_{xy_G}}{t} \pm \frac{6*M_{xy_G}}{t^2}$$ 
com/nastranfrom.1518800581.txt.gz ยท Last modified: 2018/02/16 12:03 by phil